
NEW YORK - ALBANY

(Hudson line)

Study of speed increases for Turboliners

S.N.C.F.

DIRECTION DE L'EQUIPEMENT Département des Etudes Générales et Projets (VP) 17, rue d'Amsterdam 75008 PARIS

VPI/VPR4 Décembre 1986

STUDY OF SPEED INCREASES FOR TURBOLINERS ON THE

NEW YORK - ALBANY OR HUDSON LINE (State of NEW YORK - USA)

SUMMARY:

	-	Sun	mar	y of conclusions	
1	-	Οb	jec	tive	V
2	-	Re	sou:	rces implemented	
3	-	Li	nit	ations of the study	
4	_	Ba	sic	data and assumptions	
		4.	1 -	Basic documents	
		4.	2 -	General comments	
		4.	3 -	Equipment	
		4.	4 -	Permanent way	
5		Re	sul	ts	
Ta	ab]	Le	1:	Diagram for existing and projected speeds	
Ta	ab]	Le .	2:	Lay-out characteristics and analysis of accelerometer-recordings	
Ta	ab]	le	3 :	Amount of work to be carried out between phase 1 and phase 2	
	ab]		4 :	Broad evaluation of work required between phase 1 and phase 2.	

Table 5 : Running times computed by ANF Industrie

1

2

4

SUMMARY OF CONCLUSIONS

This Report indicates the existing track condition as found on JUNE 1986. On that basis, the top speed to be authorized for Turboliners may be raised by 10 to 25% over more than 75% of the New York/Albany line, the rate of increase of speed being related to local circumstances and made possible by track engineering works incumbent on day-to-day maintenance.

The Turboliners'speed could be further increased by an additional 5 to 10% should more substantial track engineering works be implemented, without infringing on the limits of the existing subgrade.

To make the above findings and achieve the expected running times calculated by ANF and included in Part II of this Report, SNCF used a standard French Rail speed increase approach which naturally met:

- the existing standards applicable in US railroad administrations, especially AAR standard related to the permissible lateral acceleration resulting from superelevation deficiency, set at 0.10g for adequate levels of comfort.
- the values derived from :
 - . the above standards
 - . special features of track equipment
 - . equipment characteristics

Therefore, the maximum superelevation deficiency was set at 130 mm for the whole line.

- the critical points (curves, turnouts, structures) currently requiring speed restrictions as shown by the papers emanating from US administrations.

SNCF relied on an on-line record of acceleration measurements kindly undertaken by Amtrak on the fleet of Turboliners.

1 - Aim of the study

Following a request made by ANF Industrie to SNCF's International Cooperation Department at the beginning of 1986, a study at diagnosis level was carried out in order to identify the possible speed increases for Turboliner services provided by Amtrak on the Hudson Line.

This report summarizes the conclusions of the study taking into account:

- US standards applicable to track geometry, track maintenance, safety and comfort.
- The geometry characteristics of the line in its June 1986 condition.
- SNCF rules and practice in terms of speed increases which have been changed to allow for the above mentioned items and namely for the AAR standards applicable to comfort and track equipment features: spikes ...

2 - Resources implemented

The study is based on documents related to safety and comfort rules, track geometry and maintenance standards available at SNCF or supplied by ANF and its agent Allied Corporation which also provided various track-charts and working time-tables regarding the Hudson Line.

SNCF's study is also based on the results of the projected high speed rail link between Montreal and New York (december 1984).

In June 1986, ANF and Allied Corporation organized a mission with SNCF representatives during which a series of recordings were made by means of portable accelerometers - which are in use on SNCF - and a large number of fruitful discussions were held with Albany's DOT concerning the existing line, and the schemes applicable to it, as well as with Amtrack, the FRA and Metronorth concerning US standards above all.

- SNCF's experts in Civil Engineering and in charge of studying speed increases on the French system were involved i.e.:
 - the Track Research Department set up the limitations (cant deficiency etc) compatible with the characteristics of gas turbine trainsets in order to avoid rail overturning, track shifting etc.
 - . the Department for Studies and Projects was represented in ANF's mission and analysed accelerometer data, worked out the potential speed increases and determined the technical requirements to implement them on to the track.

- The Track Maintenance Department quantified the amount of works required and their costs.

Despite requests made to the effect that track geometry analog records and Integrated track geometry records should be examined in detail, they were not made available. Indeed a comparison between those graphs and others plotting acceleration measurements would have contributed to the completion and reinforcement of the conclusions of the study.

3 - Limitations of the study

III

It was based on the track condition as derived from the behavior of standard Turboliner train sets. It does not therefore apply to speed increases attainable by all types of equipment assuming the elimination of some special points in the track layout (enlarged radius for some/all curves). However curve straightening has been considered easy to perform in various locations and especially where 2 tracks could be shifted on a subgrade wide enough to accomodate 4 tracks. Generally the curve straightening works - which were reported on to the D.O.T. - are extremely costly compared to time gains and whith reference to the technical solutions put forward in the second scenario of the study.

However those conclusions can be regarded as theoretical for the following reasons:

- 1) Prior to authorizing the equipment to run at higher speeds in revenue service, SNCF would make a point of going through a series of test runs at the future speed plus a safety margin. This is common practice on SNCF's main lines which are constantly being upgraded. These tests and preliminary checks are clearly more than recommendable in this case considering that June 86 recordings only concerned track number 1 and 3 (track 3 between the GLENWOOD and CROTON-HARMON Interlockings, track 1 was undergoing third rail replacement at the time). As a result conclusions for track 1 were extrapolated onto track 2.
- 2) Amtrak express trains and suburban services operated by Metronorth are provided on the same lines over half the New York Albany section. Both Amtrak and Conrail freight trains are worked on the other half. Amtrak does not own the railroad premises and pays Metronorth and Conrail for the incremental cost of track maintenance operations required to keep a given speed level.

The operating conditions of the Hudson line are such that a close cooperation between the concessionary/owner and the operator is required with regard to the implementation of speed increases with their inherent technical requirements and the stringent application of jointly agreed operating principles. SNCF have acquired a vast experience on the operation of miscellaneous traffic flows at different speeds and in an already remote past, they developed operating principles accounting for such a traffic mix, ie:

- Lines were specialized according to traffic flows,

- Traffic flows were concentrated on specific time intervals,
- Signaling was readjusted for critical zones (for the stopping at commuter stations),
- Equipment capacity was improved to relieve traffic density,
- Traction performance was improved in accordance with the mix of traffic flows.

The above principles often have to be implemented concurrently, thus requiring an optimum co-ordination between the SNCF's Departments involved:

. Civil Engineering, Equipment and Operating

This co-ordination is assumed to be feasible for optimizing the investigated Corridor.

- 3) In these conclusions, are also shown potential speed increases of Turboliners on the WEST SIDE CONNECTION, without suburban traffic from PENN STATION to SPUYTEN DUYVIL, the commissioning of which should eliminate some of the major operating constraints mentioned above (joint leg for metro-North/AMTRAK, from Grand Central Terminal to Spuyten Duyvil). Assumption was made that Turboliners would be self-propelled from the 30th Street Freight Yards and as on SNCF, the transit through the Riverside Park Tunnel would not impede the use of turbines.
- 4) The possible changes required by speed increases were not included in the cost evaluation:
 - changes on the signalling system and cab signal,
 - lengthening of the distance covered between the treadle actuating the warning device and the grade crossing.

It is clearly difficult at this stage to describe the detailed works required with sufficient accuracy.

4 - Basic data and assumptions

4.1 - Basic documents

- * TRACK CHART NEW YORK/ALBANY and dated January 1982, which includes :
 - . Number of lines, their respective localization,
 - . Track lay-out, curve radii and superelevations.

It is noteworthy that in terms of superelevations, the value of 4" is never exceeded, which corresponds to grade 4, while some sections are categorized under grade 5 and 6.

- * RECORDINGS of the vehicle structure's lateral and vertical accelerations measured first at the front truck, then at the rear one, for two turbo-train sets.
- The recordings were made on revenue-service trains having faced all the contingencies related to operations: speed restrictions, running on slow-speed transitions, stops, and so forth. Recording only refer to track 1.
- * JANUARY 1983 TABLE FOR MAXIMUM PERMISSIBLE SPEEDS (Amtrak) :
 - . Line speeds

INI

. Singular speed restrictions.

This paper is not fully reliable, especially for singular speed restrictions which do not always reflect the actual speeds operated by trains. It is expected and quite likely that these tables are changed for each operating service with the relevant seasonal variations (track subsidence and condition, engineering works under planning, etc...).

Some speed enhancements may have taken place since this paper was published (see. L. ROSSI's letter dated 6.14.83); as far as possible, our proposed speed rises have considered the current and future patterns.

* PARAMETERS OF THE STUDY

198	Track ma	intenance fety stand		ent	Maximum pe superelevatio (<u>0.118</u> R	on deficiency
Class	Max. S miles	Speed km/h	Maximum inches	superele- vation mm	Spiked track	Track with mo- dern fastenings
4	80	129	4	102	90	140
5	90	145	5 ⁽¹⁾	127	130	160
6	110	177	6 ⁽²⁾	152	140	160 ⁽²⁾

- These two values are not under use on New York/Albany, but could be adopted as the proposed speed increases are implemented.
- (2) 180 mm if V≤170 km/h (106 mph).

- The superelevation deficiency values were worked out to account for the relative lighweight of turbotrains and also US track standards.

Limits are set for rail overturning on spiked sections, track lateral displacement on modern tracks with fastenings. The Prud'homme's Formula gives HL $< 0.85 \ (\frac{1}{2} + P)$

HL = lateral force (expressed in tons)

P = axleload.

11

4.2 - General comments

- There were many sources of data for US papers (for maximum permissible speeds, in particular).
- The recordings were performed on line 1 only and at the maximum commercial speed or at a lesser speed (our test trains operate at the target $V\,+\,10$ khp).
- No track condition recordings were available (such as Mauzin, the French Railroads'track inspecting vehicle).

4.3 - Equipment

. Run on 2. June 86 Front-cab recording

Primary suspension fitted with new springs, redesigned, secondary suspension (silent block) with excellent overall condition.

Mileage, since the last overhaul: 244.447 miles.

. Run on 5. June 86 Recording on the rear cab.

Redesigned primary suspension, 4 new dampers, good overall condition.

Mileage since the last overhaul: 332.411 miles. Given the locomotives' mileage, the condition of these locomotives, may be considered as average.

For the assessment of the theoretical values related to lateral accelerations induced by superelevation deficiency, we have considered the sway applicable to turboliners.

As to the second study with maximum speeds achievable after works, the US railroads should provide:

- . Either an allowance for superelevation standards applicable with reference to maintenance classes.
 - . Or rating some sections on a higher class.

. Or, and this would be the best approach to the project, to allow higher superelevation deficiencies than the usual ones applicable to ordinary trains, the Turboliners having a more favorable sway, smaller axleloads and a lightweigh driving truck.

We have restricted in our proposals the value for superelevation deficiency to \leq 130 mm, whereas on the French Railroads' lines, the Turboliners have a normal superelevation deficiency of 160 mm (ie 6" 3/8) and an exceptional superelevation deficiency of 180 mm (ie 7").

4.4 - Permanent way

During the tape analysis, we noted the highest vertical acceleration levels that do not jeopardize safety, but which are good comfort indicators.

- . The first phase of the study (without work) considered these levels with accuracy and of course the lateral accelerations due to maintenance defects.
- . The second phase of the study was less restrictive, since it took for granted that the required works would be completed for overall improvements, especially on interlocking zones.

Classes of runs on New York/Albany route :

- . New York central (MP 00) Poughkeepsie (MP 73) class 4, class 5 envisaged, or possibly 6 ? From MP 16 to MP 25

 MP 51 to MP 72
 - . Poughkeepsie (MP 73) Hyde Park (MP 79) class 4
 - . Hyde Park (MP 79) Barryton (MP 94) class 5 class 6 possibly envisaged ? From MP 90 to MP 98
 - . Barryton (MP 94) North Newton Hook (MP 124) class 5
 - . North Newton (MP 124) MP 140 class 6
 - MP 140 (Port Road) Albany (MP 142) class 4?

The track was assumed to be entirely spiked throughout the route.

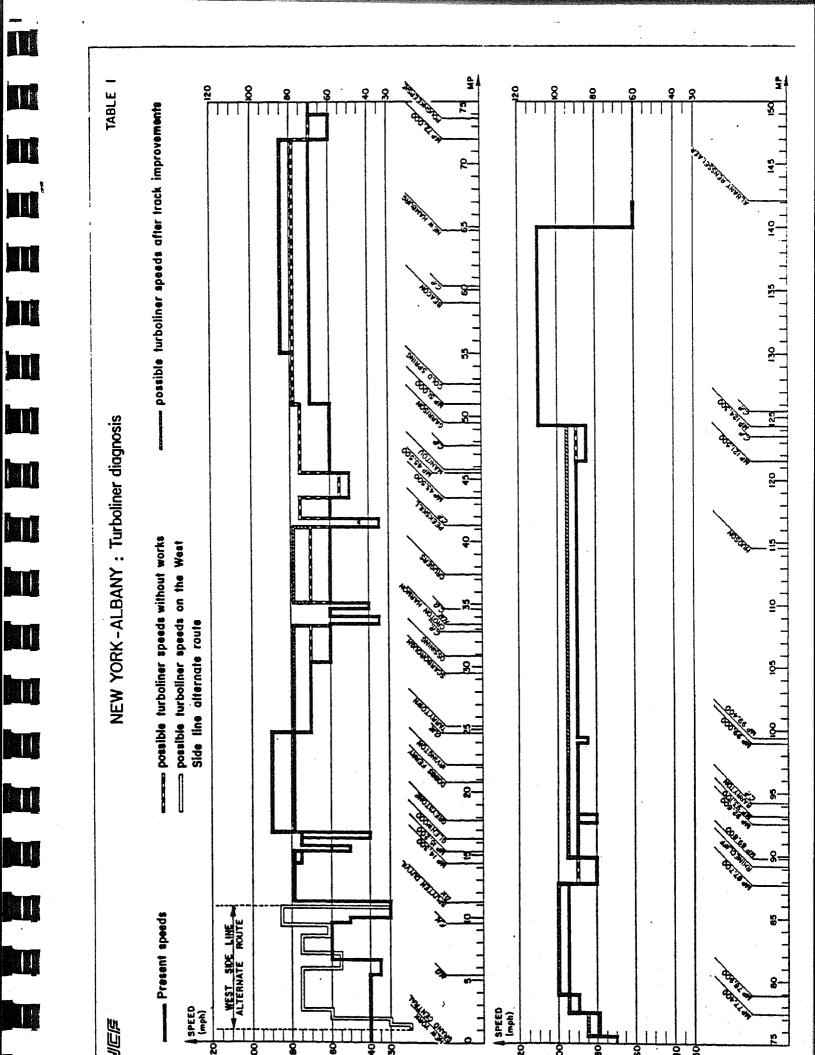
5 - Results

A first study shows the potential speed increases to be achieved without modification to :

- the track lay-out
- the existing maintenance classes

and thus without additional expenses in the short and medium terms, save a few minor adjustments that could be considered as part of the day-to-day Maintenance.

A second study conducted on similar basic data and parameters considers other alternatives for speed increases which could lead to:


- improved track standards and possibly upgrading in the maintenance class
- the replacement of points and crossings
- increased superelevations to minimize deficiency and to remain close to the US standards, whilst taking advantage of the Turboliner's sway (flexibility coefficient):

$$(8 \text{ nc} < \frac{1}{1500} (1+0.25))$$

Ync = uncompensated acceleration.

The results are shown hereafter in the tables :

- Table 1: Diagram for existing and projected speeds
- Table 2: Lay-out characteristics and analysis of accelerometerrecordings (3 sheets)
- Table 3: Amount of work to be carried out between phase 1 and phase 2 (2 sheets)
- Table 4: Broad evaluation of work required between phase 1 and phase . (6 sheets)

SNIEF

NEW YORK-ALBANY

						¥ 12		}						•		TABLE 2 1/3	
	POLITE					CI ASS	THEORE-	TRIAI			ž			PROPOSED TURBO SPEED	TURBO ED		
7	7015	RADIUS	SOL	CA	CANT		-TICAL	SPFFD	>	×	Yes	_ ;	<u> </u>	WITHOUT	WITH	PARTICULARS	
MILEAGE	LOCATION	404,004	L	Target I	1	ш	SPEEU	400	29/11	-	-		inches		M O M		
000	SEANO, STATION		E														
		1	ı		•	4	0	0.4	0.85	,	 	,	,	0.4	ı		
400	MO. MTERLOCK	•	١		1		40	83.65	20.	1	,	,	1			AMCTION WITH HARLEM LINE	
		,	1	1	1	4	0.9	69						09	,		
				-	•												
						4	90	ė					ı	20	30		
001+6		2	250	(r)	7.6	8.7	30	3.0		99'0	0.33	0.33	111/32	30	30		
10+000		, Q2	280	2/12	20	20	30	30	0.82	0.95	0.13	0.16	13/6	30	30	TURNOUT: DIVERTED BRANCH	
13.500			1343	4	20.	4	7.8	99	1	0.26	0.13	0.13	9/6	7.9	7.8		
14+000		.90 • !	1588	100	7.6	4	82	99	1	0.39	0.16	0.23	2/22	7.8	. 62	F	
14+600		,19.1	944	4	102	4	7.5	99		0.46	97.0	0.20	3 6/32	7.5	7.9		
•		£-11,	766	11/8	8	*	og .	90	0.52	0.20	0.13	0.07	2 7/16	90	90		
16+300	ELEMWOOD SITERLUCK	1.25,	1233	*	102	4	7.5	20	99.0	1	,	,	1 16/32	7.5	7.9		
16+30		,	,	,	1	4	40	6.1	,	1	•	,	,	0	7.9		
000		1.40	1048	4	102		7.9	7.0						62	06		
19+500	HASTINGS					٠.	7.9	56	09.0	ı	1	1		7.9	0.6	CANT TO BE INCOFFACED TO 4"	
22 + 7 0 0		1-30	1164	.*	102	*	7.9	14	0.72	0.33	0.13	0.20	2 7/16	8,	0	FOR CURVE AT MILE 22-500	•
23+000		0*55	1905	-	25	w	011	7.5		0.52	0.13	0.39	213/16	7.9	06		
23+100		0.55	1905	-	2.5	4 or 6	79 or 110	7.5		0.52	0.13	0.39	216/16	7.9	06		
24.700	O.W. INTERLOCK	•		•	1	4	704	50	1.31	0.26	-	0.26	1	2	7.9	DOT. ALBANY OR. 1986	
000		,010 m	909	4	108		7.0		0.78	240	1	0.8	2	2	2		
000		1001	966	9/16	8.0	¥	7.0	0.0		1		•	1	0,1	=		
								_	_	-			=	-	-	-	

SINIEF

NEW YORK-ALBANY

1

						~			· · · · · · · · · · · · · · · · · · ·		***************************************	·	<u></u>		····	*6	Vario, 110	- P					2		
	PARTICULARS			* ON H.M. INTERLOCK	V	* WITH CANT INCREASED TO	~~~~		* STRUCTURE	M ACCELERATION ZONE						* WITH CANT INCREASED TO		* WITH CANT INCREASED TO			NO CERTAIN ELEMENT	₩ WITH CANT INCREASED TO 6"	M WITH CANT INCREASED TO 4 VS		
PROPOSED TURBO SPEED	WORKS	Mph	7.9	8	\$	797	79	62	45	4. RU X	75	75	33	55	75	75"	7.5	85#	8	02	83	* 26	*001	002	
PROPOS SP	WITHOUT	n p h	22	09	\$	202	2	20	45	. 45 x	25	Æ	55	5.5	82	7.5°	16	79	R	0,2	67	% x	96	8	
-	S	inches	91/8 ()	,	13/16	3.8/32	13/32		114/32	116/38	12/22	19/16	31/2	33/8	31/32	228/3	ZE/12	013/16	13/32	17.2	27/16	8 V X	41/16	3 / 0	
	,¥;	11/15			,	0.13	0.59	0.39		1	020	020	EI.0	0.26		0.39	0.30	0.33	0.26	,	0.20	0.33	0.36	0.72	
χŧ	Xnc	11/15			,	100	,	0.07		,	S S	0.13	70.0	0.07		ı	20.0	0	,		0	0	91.0	0.20	
	×=	28/11 2			,	0.20	0.59	0.46		•	033	033	0.20	033		0.39	92.0	033	920	,	020	0.33	0.52	260	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		11/12	1.05	0.92	80		0.78		0.72	,	,		99.0	ı		0.52	950	0.59	82 O	١	ı	,	0.92	0.59	
TRIAL	SPEED	mph	Q	Ŷ	33		09	909		35.		19		20		09		70	09	69	76	86	96	9.3	
THEORE-	SPEED	HQE	90	60/35	₽	09	8	90	35	35	09	90	20	50	09	09	09	02	9	٤	7.9	06	50	83	
CLASS	0F	LINE	*	4	4		4	4	4	4	4	4	4	4	4	4	4	4?	47	4	ın.	li:	60	•	
F		£	68	ı	12	69	20	12	683	12	202	701	63	63	12	102	102	102	51	102	102	102	102	102	
TNAC	3	Inches	3 1/2	•	2/10	3/16	a	2 /10	3/18	3/10	+	*	212	2/12	01/2	4	4	4	2	4	*	*	4	+	
y =	3	Æ	1069	-	1164	631	1397	936	305	765	765	776	901	532	1233	624	765	895	1397	6901	191	953	1247	1519	
SINCA	2	degrees	1*38'		1-30	2.48	1° 15'	1* 52'	5-43'	2.17	ي. 3ء لئ _ا	,51 e2	3° 29'	3017	,52°,	2°48'	Z 17'	1. 67	re 15.	r 36'	,oe •1	· 50°	. 54	- - -	
ROUTE	LOCATION		· · · · · · · · · · · · · · · · · · ·	C.R. INTERLOCK	C.D. INTERLOCK				PEEKSKILL)									
RO	MILEAGE		30 + 800	32 - 900	34+ 600	37+ 000	36 + 800	41 + 000	4 + 300	42 + 000	45+900	43+100	43+ 800	44+100	45+600	49 + 200	50+ 300	000 + 09	73 + 800	75 • 100	78 • 900	78 + 500	84. 300	65 + 400	

SINIEF

NEW YORK-ALBANY

1

الناطالاسي												-	-		-		 	·····	:				
6/6 7 3 3 GW	PARTICUL ARS			*WITH CANT INCREASED TO 6	WITH CANT INCREASED TO 6	A WITH CANT INCREASED TO 6"		STRAIGHT		WITH CANT BECREASED TO 6	*TURNOUT ***CAM UP TO 6"		* STRUCTURE .										
D TURBO	WITH	WORKS	41	90	95*	96 *	96		86	95*	95 AB	110	110										
PROPOSED TURBO	WITHOUT	WORKS	448	*0 .	*08	*0¢	8		86	*0 6	06	011	011	۵.,								·	
	ž		1	4 1/16	6778	67/88	3 25/32		38/98	67/32	5 3 VIB	4 H / 3e	411/82	٥.									
	,	=	20/11	0.20	0.13	0.26	,	0.62	0.20	0.62	0.62	0.59	0.49	1									
, =	,	200	7.0 ()	0.13	0.13	0.13	ı	o	0.20	0.13	,	0.07	0.07	•									
	,	=	11/02	0.33	0.13	0.39	,	0.62	0.39	0.66	0.52*	99.0	0.56	ı									
	<u>^</u>		117.04	0.59	0.39	,	0.66	0.85	0.85	0.66	0.62	96.0	0.92	1									
TRIAL	מייים בייים	SPEED	ųdus	78	7.8	924	06	08	85	0.68	8.5	<u>8</u>	901	45 ?									
TEORE-	-TICAL	SPEED	apa		. 06	08	06	08	80 80	8	98	01	2	09	10								
CL ASS	_		LINE	10	10	80		80	20	10	80	9	•	~									
	<u> </u>		£	8	102	102	202		102	102	8	102	102	,									
	CANT		a de la constante de la consta	*	4	*	*		4	*	*	•	•	,									
	SOI		£	953	963	963	1247		164	963	944	1747	1747	, .						-			
	RADIUS		degroos	,03 <u>•</u>	 	-08	P24'		1.30	000-1	1991	.00-	-00-1										
TE		LOCATION		•										- 43	ALBANY	•		1				1	1
ROUTE		MILEAGE	•	89+000	\$2+600	92+900	94+900	008+96	98+200	104+300	E3+800	134+100	135+700	142+000									

NEW YORK - ALBANY

1/2 TABLE 3 -

ROI	ROUTE	SPEEDS	DS	MOR	KS T0	WORKS TO BE DONE	ш	1 Tamping 3 drainage	ge
from	to	1st phase	After works		2	3	4	2 Tamping + cant 4 replaci adjustment	replacing of turnout
0	· · · · · · · · · · · · · · · · · · ·	75 50	79 60	0.5	0.3			Tamping, cant + 13 mm	
TUNKEKS	GLENWOOD INTERLOCK	75	79	0.1					
GLENWOOD INTE	GLENWOOD INTERLOCKING	40	09				9		er en
OOD INTERLOCK	0.W. INTERLOCK	79	06	2.2				If route upgraded to class 5, as planned	peu
INTERLOCK	24.700	70	79	0.5		0.3 x	9	6 turnouts + tamping + drainage	
INTERLOCK	MP 30.300	20	79	1.7		·			
300	C.R. INTERLOCK	75	79	0.4				0.28 vertical at C.R. INTERLOCK, but no time gain to	no time gain to
INTERLOCK CD	32.300 CP 40	70	79	0.4				2 curves between MP 37 and MP $\frac{32}{8}$ - can	32 - cant + 0.5 (13 mm)
	PEEDSKILL CURVE	70	79	0.2				0	
) PFEKSKITT	41.200 41.800	45				0.2 x		I = 118 mm at 45 mph. I = 146 mm at 50 mph, so limit without upgrading to class 5 (+ structure at MP 42)	O mph, so limit ture at MP 42)
500 500 500		75 55 75 79	75	0.3	0.3		4 \	I = 117 mm at 55 mph I = 141 mm seek upgrading to class 5 and cant + 13 mm At 54.600 I = 128 mm at 79 mph - Seek upgrading to	and cant + 13 mm upgrading to
000	MP 79.000	79	82	0.1		0.1 x 2	4*	class 5 Structure 58.000 - * INTERLOCK 58.500 Tamping but no replacing - Same at 61.500 - Seek upgrading to	Tamping but no rading to
000	MP 74.000 MP 75.500 MP 77.400	70 20 20		0.3				class 5	

100000000000000000000000000000000000000	

NEW YORK —ALBANY

TABLE 3 _ 2/2

			Z	E E	ORX I	NEW YORK ALBANY	Ž	TABLE 3 -
RO	ROUTE	SPEEDS	EDS	WOR	WORKS TO	BE DONE	ш	1 Tamping 3 drainage
from	to	1st phase	After works	-	2	3	4	2 Tamping + cant 4 replacing of turnout adjustment
.900	MP 78.900 MP 85.400	90	95 100	0.5*	0.4			Cant + 26 mm - Curve 78.500 I max. 114 mm - * with 1 level crossing
.400	MP 87.700 MP 89.800	95	100	0.4	_	_		Dhina cliff cts at MD RO
009	MP 92.600 MP 93.100	888	95 95		0,3	_		.a. av rii 90 mph -
.100	MP 99.000	90	92	3.6	÷	0	7	at 95 mpn I = 110 mm at 95 mph
.400	MP 99.400 MP 103.900	85 90	95 95	1.6	? . -	0.1	70	I = 110 mm at 95 mph
3.900 7.000	G.O. INTERLOCK MP 107.000 MP 121.500	06	95	0.2		0.2 ×		Important works Structure 108.100
1.500	MP 124.300	06	95	1.6		7		
4.300	MP 140.000	110	110	2.0	ı			* I level crossing Comfort allowing higher speed
t from page 1				12.5 12.3	1.3	1.8	2 16	
				km 24.8 x 2	km 1.3 x 2	km 2.2 /	Ap. 18	
				- Annual - A				

141

ttrue			FR	ENCH COST (1)	U.	Ş. COST
ITEMS	UNIT	QUANTITY	Unit price \$	Cost S.	Unit price S	Cost S
1) MECHANICAL TAMPING						
a) Detail of cost per linear meter of track (ml)	-					
- Mechanical tamping with laying of ballast (0.20 m)	ml	1	1.56	1.56*	[
- Ballast supply	t/ml	0.68	5.14	0.41		
- Ballast unloading	t/ml	0.03	0.62	0.05*		
cost january 1985 updating coefficient = 1.03	mì	1 .		2.02		-
cost january 1986	ml	ı	2.03	2.08		
rounded up at	mì	t	2.10	2.10		
b) Of which cost of labor						
- Quantum of cost of labor = 20 % of costs marked*						
total of costs marked*, january 1985 updating coefficient * 1.03				1.61		
total of costs marked*, january 1986			İ	1.66		
quantum of cost of labor	m)	ı	0.33	0.33		
c) Total cost of mechanical tamping						
- Mechanical tamping, all included	mì i	49,600	2.10	104,299.00		
rounded up at				104,300.00		
•						
2) MECHANICAL TAMPING WITH TRACK LIFTING			ŀ			
a) Detail of cost per linear meter of track						
- Mechanical tamping + track lifting (cant) up to 0.15 m	mì	1	6.23	6.23*		
- Ballast supply	t/ml	1.00	5.14	5.14		
- Ballast unloading	t/mi	1.00	0.62	0.62*		
cost january 1985 updating coefficient = 1.03	ml	1		11.99		
cost january 1986	ml	ı		12.36		
rounded up at				12.40		
b) Of which cost of labor						
- Quantum of cost of labor = 20 % of costs marked*						
total of costs marked*, january 1985 updating coefficient = 1.03				6.85		
total of costs marked*, january 1986				7.06		
quantum of cost of labor	ml	1	1.40	1.40		
c) Total cost of mechanical tamping with lifting						
- Mechanical tamping + track lifting (cant), all included	m1	2.600	12.46	32,406.00	.	
rounded up at				32,410.00		

. .

j a

ITEMS	,,,,,,,,		FREN	CH COST (1)	U.	S. COST
	UNIT	QUANTITY	Unit price \$	Cost \$	Unit price \$	Cost S
3A) DRAINAGE (ROADBED)	·					-
a) Detail of cost per linear meter of track						
boliust Sub - layer boss - laye						
370 cm. 170 cm.						
Volume of base layer : 1 ml \times 5.40 m \times 0.15 m	m3/m1	0.81				
Volume of sub-layer : 1 ml x 5.40 m x 0.25 m	m3/m1	1.35				
total volume	m3/m1	2,16				
- Excavation for base layer	m3/m1	18.0	3.54	2.87		
- Disposal of existing sub-layer + excavated material	m3/m1	2.16	2.17	4.69		
- Placing of new base layer	m3/m1	0.81	11.96	9.69		
- Placing of new sub-layer	m3/m1	1.35	36.66	49.49		
cost, january 1985 updating coefficient = 1.03	mì	1	66.74	66.74		
cost. january 1986	ml	1	68.74	68.74		
rounded up at	ml		69.33	70.00		
(Note : base layer 11.95 \$/m3 = 2.31 + 9.64)				70.00		
b) Of which cost of labor						
- Quantum of cost of labor = 50 % of the following costs*						
. 2.87 \$* . 2.31 \$ × 0.81 = 1.87* \$. [2.31 \$ × 36.65/11.95 = 7.09 \$] × 1.35 = 9.57 \$* . 4.69 \$						
total of costs marked*, january 1985 updating coefficient = 1.03				19.02		
total of costs marked*, january 1986				19.59		
quantum of cost of labor	m1	1	9.82	9.82		
c) Total cost of drainage (roadbed)	w 1 1 w 1 1 1					
- Drainage works (roadbed)	m1	2,200	69.33	152,528.00		
38) DRAINAGE NEAR STRUCTURES						
a) Detail of cost per linear meter of track						
- Laying of precast concrete ditches h = 0.70 m		•				
updating coefficient # 1.03	mì	1	160.47	160.47		
cost january 1986	_,	•	100			
	mì	•	165.15	165.15		

ITEMS			FREN	CH COST (1)	U.	S. COST
11EM2	UNIT	QUANTITY	Unit price \$	Cost \$	Unit price S	Cost \$
b) Of which cost of labor				·		
- Quantum of cost of labor = 25 % of above unit price	m l	1	41.29	41.29		
c) Total cost of drainage near structures						
- Laying of precast concrete ditches h = 0.70 m	ml	1.000	165.15	165,150.00		
3C) DRAINAGE (ROADBED) OUTSIDE RENEWED TURNOUTS						
a) Detail of cost per linear meter of track						
- Removal and relaying of track in open line	m)		20-10			
- Ballast clearing	m1			20.10		
- Ballast supply	t/m1	1.6	9.35	9,35*		
- Ballast unloading	t/ml	1.6	5.14	8.23		
- Levelling of the track	m)	1.6	0.62	1.00*		
cost january 1985 updating coefficient = 1.03	ml	1	6.23	6.23* 		
cost january 1986	ml	1	46.25		1	
rounded up at	ml	1	47.00	46.25 47.00		
b) Of which cost of labor						
 Quantum of cost of labor * 75 % of costs marked* 						
total of costs marked*, january 1985 updating coefficient = 1.03				36.68		
total of costs marked*, january 1986				42.45	[
Quantum of cost of labor	ml	1	28.36	28.36		
c) Total cost of drainage outside renewed turnouts						
- Length of zones = 2,200 - (6 turnouts x 60 m) = 2,200 - 360 m = 1,840 m						
- Drainage of zones outside renewed turnouts	mì	1.340	46.74	86,000.00		
d) <u>Total of drainage works</u>						
- Total 3A + 3B + 3C				403,700.00		
4) RENEWAL OF TURNOUTS						·
a) Detail of cost per turnout						
- Supply of single turnout tg 0.085	u	1	20,083	20.083.00		
Removal and laying of single turnout tg 0.085	u	1	4,720			
Supply of track between 2 turnouts (interlocking)	u	1	1,201	4,720.00*		
Removal + laying of track between turnouts (interlocking)		1	200	1.201.00		
Ballast supply	t/u	105	5.14	200.00*		
· Ballast unloading	t/u	105	i	540.00		Y .
- Levelling of turnout	L/U	10)	2,547	65.00* 2,547.00*	.	

./.

) TENC			FREN	ICH COST (1)	U.	S. COST
ITEMS	UNIT	QUANTITY	Unit price \$	Cost \$	Unit price \$	Cost S
- Excavation for turnout	mì	40	22.44	\$97.00*		
- Excavation for ordinary track	ml	30	17.61	523.00*		
- Supply of ordinary track	mì	20	120.13	2,402.00		
- Removal and relaying of ordinary track	ml	20	17.14	343.00*		
 Ballast supply for 20 m of ordinary track (ballast = 2.1 t/ml) 	t	42	5.14	216.00		
- Unloading of ballast for ordinary track	t	42	0.62	26.00≄		
- Levelling of ordinary track	mì	20	6.23	125.00*		
cost, january 1985 updating coefficient = 1.03	u	1		33,893.00		
cost, january 1986	u	ı	34,915	34.915.00		
rounded up at	u	I	35,000	35,000.00		
b) Of which cost of labor per turnout						
- Quantum of cost of labor = 75 % of costs marked*				·		
<pre> total of costs marked*, january 1985 updating coefficient = 1.03</pre>				9.452.00		
total of costs marked*, january 1986				0 717 00		
Quantum of cost of labor, per turnout				9,737.00 <u>7,323.00</u>		
c) Total cost of turnout renewal						
Renewal of turnouts, all included	u	18	35,055	630,990.00		
) RECAPITULATION OF TRACK WORKS						
Mechanical tamping			I			
Mechanical tamping with track lifting				104.210.00		
Drainage			ŀ	32,410.00		
Renewal of turnouts		-	- 1	403.700.00		
cost of track works, all included, January 1986				630.990.00	İ	
rounded up at				1,171,310.00		
			1	171,500.00		
		ļ				
			İ			
				1		

ADDENDUM Nº 1

				T			
	ITTUE	11017	AHAUTTTV	FRENC	H COST (1)	U.:	S. COST
	ITEMS	UNIT	QUANTITY	Unit price \$	Cost \$	Unit price \$	Cost S
r arr	RENEWAL OF TURNOUTS WITH LAYING OF UIC 60 - A 74 tg 0.085						
	a) Detail of cost per turnout						
	- Supply of single turnout UIC 60 - A 74 tg 0.085	ប	ı	28,356	28.356.00		
	- Removal and laying of single turnout tg 0.085 UIC 60 - A 74	u	1	5,193	5,193.00*	.	
	- Supply of track between 2 turnouts (interlocking)	u	l.	1,321	1.321.00		
	- Removal + laying of track between turnouts (interlocking)	u	1	219	219.00*		
	- Ballast supply	t/u		5.14	643.00		
	- Ballast unloading	t/u	125	0.62	78.00*		
'n	- Levelling of turnout	u	ı	2.547	2,547.00*		
	- Excavation for turnout	mì	40	22.44	\$97.00*		
_	- Excavation for track	ml	30	17.61	528.00*		
Í	- Supply of track (UIC 60)	នា	20	132.27	2,645.00	1	
	- Removal + laying of track (UIC 60)	ml	20	17.92	358.00*		
Fe	- Ballast supply for 20 m of track (ballast = 2.4 t/ml)	t	48	5.14	247.00		
	- Unloading of ballast for track	t	48	0.62	30.00*]	
	- Levelling of track (UIC 60)	ml	20	7.95	159.00*		
h	cost, january 1985 updating coefficient = 1.03	u			43,221.00		
	cost, january 1986	u	1	44,502	44.502.00		
	rounded up at	u	t ·	44,500	44,500.00		
_	b) Of which cost of labor						
	- Quantum of cost of labor = 75 % of costs marked*						
	total of costs marked*, january 1985 updating coefficient = 1.03				10.010.00		
H	total of costs marked*, january 1986				10.314.00		
	Quantum of cost of labor, per turnout				7,736.00		
H	c) Total cost of turnout renewal						
	- Renewal of turnouts, all included	, u	18	44,502	<u>\$02,058.00</u>		
	: · · · · · · · · · · · · · · · · · · ·						
							ļ

ADDENDUM Nº 2

			FRENC	H COST (1)	· U.	s. cost
ITEMS	UNIT	QUANTITY	Unit price \$	Cost \$	Unit price \$	Cost S
EXTRA COSTS FOR TRACKS WITH 3 RD RAIL						
1) EXTRA COST ON MECHANICAL TAMPING						
- Extra cost on mechanical tamping	ml	i	0.62	0.62		
- Extra cost on quantum of cost of labor	ml	1	0.09	0.09		
2) EXTRA COST ON MECHANICAL TAMPING WITH TRACK LIFTING		ı				
- Extra cost on mechanical tamping + track lifting	m1	i	3.74	3.74		
- Extra cost on quantum of cost of labor	mî	1	0.42	0.42		
3) EXTRA COST OF TRACK REMOVAL AND LAYING IN ZONES WITH DRAINAGE WORKS						
- Extra cost on track removal	ml	1	0.39	0.39		
- Extra cost on track laying	mì	i	0.89	0.89		
- Removal of third rail	ml	1	1.06	1.06	·	
- Laying of third rail	ml	1	1.59	1.59		
total of extra cost, january 1979 updating coefficient = 1.51				3.93		
total of extra cost, january 1986	ml	ı	5.93	5.93		
rounded down to	m1	1	5.90	5.90		
- Extra cost on quantum of cost of labor	mì	I	4.44	4.44		
4) EXTRA COST ON RENEWAL OF TURNOUT						
- Extra cost on removal of turnout	u	1	43.62	44.00		
- Extra cost on laying of turnout	u	1	156	156.00		
Removal of third rail	U	1	74	74.00		
- Laying of third rail	u	1	111	11100		
- Removal of extreme elements	u	1	9	9.00		
- Laying of extreme elements	u	ı	19	19.00		
total of extra cost, january 1979, per turnout updating coefficient = 1.51	u	1		41100		
total of extra cost, january 1986, per turnout	U	ī	623	623.00		
rounded up at	u	l l	625	62300		*
- Extra cost on quantum of cost of labor, per turnout	u	1	467	467.00		
(1) <u>MOTE</u> :						
These costs have been computed on the basis of French National Rail roads' (S.N.C.F.) "Série de prix projets, 1985 édition".						
They do not include: - taxes and overhead expenses, - transport costs and indirect costs on materials, - site monitoring and protection costs.						
Costs in US \$, on the basis of 1 \$ = 6.42 FF (exchange rate january 1987).						

RUNNING TIMES

Computed by ANF Industrie on the basis of SNCF's speed diagrams

NEW YORK - ALBANY

			T				· / · · · ·	ή
On-line ruoning	time (standard running with a '> % requinrity marqin)	39.2	35.6	12.5	19.1	20.1	126.5	119.5
(nit	On-line traction consumption (trainset) US gal/mile	1.83	1.74	2.13	1.74	2.10	1.87	1.70
Basic caning (without margin)	Booster Line in % of on-line running Line	36.6	ĸ	67.9	42.4	90.85	53.2	51.7
Basic	Average on-line numing time and speed on - mph	37.3 mn 53.5 mph	33.9 mn 71.2 mph	11.9 mn 78.4 mph	18.3 mn 85.2 mph	19.1 mn 86.9 mph	120.5 mn 70.7 mph	114 ma 75 mph
	Route	New-York Croton-Harmon 33,3 miles	Croton-Harmon Poughkeepsie 40.3 miles	Poughkeepsie Rhinecliff 15.5 miles	Rhinecliff Hudson 25,3 miles	Hudson Albany-Rensselaer 27.7 miles	New-York 4 Albany stops	142.1 miles stop
M.	Traction tubines	1 turmo XII and 1 turmo III	this list one used as a booster)	Performences and consumptions computed for "standard" weather	conditions with "standard" contrary wind tuken into			
level	of limit spend	Limit	treck works	table n°1				
Typo	of trainset	RTL M1+3R+M1	- gear ratio 125 mph - driving axie load : 19 t	trainset mass weber murmal load : 302 t	power to weight ratio			

NEW-YORK - ALBANY
(WEST SIDE LINE ALTERNATIVE)

TABLE 5 2/2

ءَ ا

-	976			Basic	Basic running (without margin)	in)	On-line running
i ype of trainset	of limit speed	Traction turbines	Route	Average on-line running time and speed	Booster time in % of on-line running time	On-line traction consumption (trainset)	running with a 5 % regularity margin)
				ng - ng		US gal/mile	e e
RTL M1+3R+M1	· ·	1 turmo XII and 1 turmo III	New-York Croton-Harmon . 33.3 miles	29.4· mn . 66.3 mph iles	56.9	2.02	30.9
- gear ratio 125 mph - driving axle	Table 1	(this last one used as a booster)	Croton-Harmon Poughkeepsie 40.3 miles	33,9 mn 71,2 mph	51	1.74	35.6
trainset mass under normal load: 302 t	with West Side Line	Performances and consumptions computed for "standard"	Poughkeepsie Rhinecliff 15,5 miles	11.9 mn 78.4 mph	67.9	2.13	12.5
power to weight ratio 6.4 kW/t		conditions with "standard" contrary wind taken into	Rhinecliff Hudson 25,3 miles	18.3 mn 83.2 mph	42.4	1.74	19.1
			Hudson Albany-Rensselaer 27.7 miles	19.1 mn 19.1 mn 186.9 mph	90.85	2.10	20.1
	•		New-York 4 Albany stops		59.7	1,95	118 (rounded)
	•		142.1 miles stop	105.5 mn 80.4 mph	58.5	1.74	111